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Abstract: P-Chiral phosphorus ligands did not receive widespread attention in organic chemistry until Knowles made his landmark
contribution in asymmetric hydrogenation by developing P-chiral ligands CAMP and DIPAMP. Although numerous P—chiral ligands
with high catalytic activity have been subsequently developed, most of them are air-sensitive or lack of structural modularity,
impeding their practical application in chemical industry.P-Chiral dihydrobenzooxaphosphole ligands represent a class of sterically
bulky, electron—rich, structurally tunable,and chemically stable phosphorus ligands.Over the past decade, more than one hundred
variants based on this scaffold have been reported and successfully applied in diverse organic transformations. This review
comprehensively summarized the applications of these ligands in catalysis and synthesis, encompassing sterically hindered coupling
reactions, addition reactions, cyclization reactions, and hydrogenation reactions. Special emphasis was placed on their unique
catalytic properties in asymmetric catalysis and synthesis, such as asymmetric couplings, asymmetric C—H activation, and
asymmetric dearomative cyclization. These P-chiral dihydrobenzooxaphosphole ligands are expected to play an increasingly
prominent role in asymmetric catalysis, green process development for pharmaceuticals and industrial-scale production.
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Fig.1 Representative P—chiral phosphorus ligands

i 10 4720 BT R AT AR Wb B AL Wk
FERCAAT TR AR, HATE ol Bl i
ATRIER T2 KA WU rh Y o %
A ERASE LU S 28 TR R AR
(BOP) .2 i JR e S O ) — 0RO S 2 T AR
( BOPPO) 2 fi R A iy — S A A A
(POP) XU S A IS 2% B LA ( BIBOP) LUK
F7 R S AT AR B BC R ( BABIBOP) (4 2) o
XA B B BT EC AR 2 P AL rp R B L L5
4 BRI P A e B, T B AR A4 1) 25 A
W L f - JE A R T i a5 SO IR s iz
A B 5 i DT B A5 R 2) R LA A L RE A
HEVEE T ) TR PR BT, T A X FRfE AL 3) i
TE AR IR ot B AR TR A 5 | AU
A ZRGEA I A 4 PR 2000 A 2 [ o7 BELARR P L 491
UNAESEST ORI I 07 B0 B 5 | ABURIE AT 353

Wi T4tk 1A B TR TR B R TR 4) 2%
A MR ELZ8 R4 PF R RS B E R B T
WA 5) KBTS T R 7, K
BB ST AN T A W R T A SR . X
&S NI E 007 = e B R o L N SR
A S AN FR A AL R B B4 Tk AR o

2019 4F, Tang %5 LI ATFIB R ML T 3
AR R B e B R R T AR R X R
AL I T 490 40 SUBETC 45 ( BIBOP) 7 £ F A
X ik A HH B 5 A AR S T e
BRI e oo/ B8 LR -2 B AL 125 2052 11
YT % ATHEZAS TR IR YRR TT 2590 (4
TEEAA . 2024 4F, Tang %5 X% B R TE A
A 5545 R e B R P AR T S A TR F) R VR B
TR T HAEAS U SR A X BRI A X FRERAL
JR S AR F BRI B S LA B AS it Bk Ak 2 v 17



5547 B 12 4

RN B T TSRO R R B TR A AL 5 5 b A 3

BT, B TRz HAG S A R 1

I AL AT ORI T I ZE R AARATE A X R
HEAL T 2 AR A e, OIS T AR 2
AOBIFSEHE RS , 60 5% 2 PR AL W7 P 4 S o3 i
HYAXFK Suzuki-Miyaura 55K 73 N #1531 7]
AN X ke S B T A 1 2R R 5 1) AN X o £ R
PABAS 3 B 3 J5 Heck fH K 250 AR SO SE H]
2024 4F RES I BUR ZE R, WA Ir O 4 4 2

O3 A W T RO SR 2 B e T A A A B
S AL 35 AN X PR IR AN X A T B S 7~ AN X6
AR LR AN 3 Bk A 5 0z 8 15 S 9l
TR S TR ) 3R S AL . B AR SR IR
T — RO SR A TR ot T A7 S X P i AL 5
B I B N a2 R 00 B DA AN X R AR A 25
S ) A S TR 3B R R K, AN 8 B I M 1Y) T 2
BT

B2 AT KT T A R R A e B T

Fig.2 P-chiral dihydrobenzooxaphosphole ligands involved in this review



4 f#ik5  CHEMICAL REAGENTS

547 B 12 1)

1 BEFME TSI E B B R 7 1B B R K
i Rz F

2 SIS HA T S e e Ak
RIS 2 — AR LA AL 2591 2 R
FIRFE AT ] H 25092 BT AR AL
Jboe B A A e TP PR B O AR IR SR 2 R A8 X
T J52 T 4 5 AR A ) I G S S o £ e 7 B
T A MR B EEMER . AT E N
B T G L AT 0 R 7 v 28 A REL BB
AR AT Bk« AN X R Suzuki-Miyaura {5 B A %] FR
Heck 24780 J5 137 « A5 Yo B BB S0 46 0 A« A 00 0
BRI AR SRR T R AT A i T oL 9 AR % R T g
AV B HA A B B2 v o
L1 RO BELBR BB b o (o

i E BT AR ], 6 T KA BH Suzuki-Miyaura
3 SUAB B 2 1% 14 TF 5% B SR 96 R 45 B Buchwald
BN Hiz 8 e FH E 27 bk 5L i TC A4 38 3 Suzuki-
Miyaura 52 S AL 72 U 405 B 6 ORI 55 4 10 7
Ve (EL 5 W e A A i BOAR A R T R S
2010 4, Tang %" Fi) Fi] — &0 3 - 48 2% i Joe L 1
BIDIME 5, AntPhos , 76 i fL 7] 7 45t R a2 5
T AR DU AR B S5 e A (T 3a) o (HARE
B T T AR ST 3 ST R Aoz B
WP, W R AR 125 K 99% o B 3 1 {1 AR IR
AR ZR 33— 25 STB T 45 B SRR 1% 1% 35 4
5 vt 4 W R =2 18] f) A 37 BEL 95 4 B Suzuki-
Miyaura {55 . %07 s (9 8 BOME7E 4 F e 0 1L &
WA AR S 75 43 B0 TE , LADE SR 3615 H bR
P 3b) T

a. 3Lk [6 1 b.3ck [7,8]
B3 AR A B 5 = 5 S 05 He e s
Suzuki-Miyaura 38 B 2 (6]

Fig.3 Pd-catalyzed steric hindered aryl-aryl and

aryl-alkyl Suzuki-Miyaura cross-coupling reactions **
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Fig.6 Pd-BIDIME catalyzed Suzuki-Miyaura
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cross-coupling between two aryls in water
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Fig.10 Pd-BIDIME catalyzed asymmetric

Suzuki-Miyaura cross-coupling reaction >
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Fig.11 Pd-BIDIME catalyzed asymmetric Suzuki-Miyaura

cross—coupling in the synthesis of natural products[m
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Fig.19 Pd-catalyzed Heck-type coupling reactions
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Fig.25 Pd-AntPhos catalyzed enantioselective

y-arylation of cyclic lactones **

TPAE O R B PR PR . 2015 4, Tang
S T M SR B B ST P ER A S
L N =0 25RO B IR T 2 245 1 2R 81
BET-PEIBOY SRR TR ( 1 26) , R fems ik 92%,
S WRVE RV A 88% e. e.o 1T NARINE T
SRR ISIE SN R r /2 ik B e

B 26 SEHEILAY T N A N FRO7 AL
HOER PTG
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C—H arylation for construction of chiral phosphonateswﬂ
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FR( TMCPA) X 7= X e i B 1 10 5 1) S 385, i )
53 B A PR AR A 5 BRI, S IR 10 X ek

FEE

B27  HBIBOP flELAY 4 T Y A AR
55 3 T L
Fig.27 Pd-BIBOP catalyzed intramolecular asymmetric

C—H arylation for construction of chiral sulfoximines 0

I FFI RS X ke 20 5 55 Ak, b Rl {6 5 3
FHERNTE TR E . Xie 25" 4R1H T3@ i Pd-
BIDIME {4k 1143 PN B 206 S o ik 0 A 52 1
( 1l 28a) , o Xoh Bl 426 P R X 3o 26 1k b 25 O
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Liu 4515 % 2 T AL, — 58 Rk U 9 AN X Bk 05
AR R ( TR 28b) L s A0 2% D 5 X e e e A
2 o ST T T S SR O — 15 2k L i AL A
TERCIRI % h B M-

a. 3CHk [51 J; b.3chik [52]
28 4U-BIDIME 4k 143+ P I S AN
B SRR A X B S
Fig.28 Pd-BIDIME catalyzed asymmetric B—H or
C—H arylation's"iz'

G T 0 X W e e 2 i A A S
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Fig.29 Pd-AntPhos intermolecular enantioselective
[55]

C—H arylation
2 BFH_SEHREBIREREERITIRINEK
= Rz # Rz F
2.1 b S OB Y AR
2010 4, Fandrick 2" %38 T fi ] MeO-BI-
BOP R Be A, 4 i fb i 5 73 R S 0 o 128550 1) 5
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(90% ~99% e. e.) HEULT — F 51 TPk &5 b B2
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Fig.30 Cu-BIBOP catalyzed asymmetric propargylation
of aldehydesm'sﬂ
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FSIiE o A Y

a. 3CHK [58 J; b.3Ciik [59]
31 4/-BIDIME {75 HEMIRR X 557 BEE (1Y
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Fig.31 Ru-BIDIME catalyzed asymmetric addition of

158,59]

arylboronic acids to aryl aldehydes
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PEFRE S EE .

a.3Cik [60 J; b. 3¢k [61 1; c. 3CHk [62]
B 32 ML i I SO R 5 i o
Zie 5 LR 9 A o
Fig.32 Rh-BIBOP catalyzed asymmetric addition of

arylboronic acids to aryl ketones %

2.2 PRGOS R

2014 4, Sieber 45 JF % T —FP B AL p, -
AR Rt e AL AR, O B TR A ALY
SRR 5 0 e Hh 3t 700 A9 AR XA R, LA S5 14
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PR XRD 25k — 3. 7 (R [ 25 1 75 55 1
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33 REMEALT BRI N W R AL S )
AKEFR B
Fig.33 Rh-—catalyzed asymmetric addition of

. . .. 63
arylboronic acids to imines'®

2019 4F, Tang e 104 43 S T WingPhos
5 PFBO-BIBOP 1= 2y Mic 14, ¢ fi £k 55 & 0 4 e
55 NTCOR-AF B V. i 1) v XoF e 5% ke, RAARG
5 e e fH MNSCRAT B — R T o— 5 A
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Fig.34 Rh-BIBOP catalyzed asymmetric addition of

arylboroxines to unprotected ketimines**
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IR, TR R T X s A R T
BEW B R RIHLE . 2 H0 T — S B HLEE, 3
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Fig.35 Pd-catalyzed stereoselective decarboxylative dienylation of imines

2.3 PRRBRAS TR IR (9 AN AR A
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2 0 IR T R AR AR I ot LS R I 1 R 3o R R
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[65]

36 HE-BIDIME fi (i i 19 o 2 fe S i ™
Fig.36 Rh-BIDIME catalyzed enantioselective

hydroboration of enamides "

B 5 , Ding 257V 338 T FH 48 -BIDIME 484k,
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Fig.37 Transition metal catalyzed asymmetric

hydroboration of unsaturated C—C bond 77

5 G ) B A B ) S AR ] L Zhao 257 %
AR T B BIDIME BCAA , X0 J B i ik 247
Xt MR R AL UL ] 38a) o XTTILIRY)
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R S L R S5 1 X A e A 1 1 38b)

a. 3CHk [75 J; b. 3¢k [76]
B 38 G AR ok 0 AU FR B Ak S s 77
Fig.38 Rh-BIDIME catalyzed enantioselective

hydroboration of silyl enol ethers' 7™

ZHVEAL IR 4 B AL A R BR 9 )3 &, Shi
4TI S TR A 5 15 N I 15 e 4 14
W o4 SEAL P CHE (Y BIDIME FiC i, LA
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BAIE f I BIDIME A S it (4 , 52 B0 1 B4t AL 1 065
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DRI T TR R B T oS B
S IR R A 57 o

a. 3Ciik [77 1 b.3ciik (78]

B39 SR AR RIRRBR AR X FR Al T
Fig.39 Ni-BIDIME catalyzed enantioselective

hydroamination of unsaturated C—C bond 7"

3 BFUCSEHAEEBREREERSTRAML
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HEACA KR SEA I IR 23 AR A5 K
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3.1 AXFREIFHIE

2015 4F, Tang 25 ™" JF % 7 —Fof Xof e 16 45 1
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40 SEHEALAXTFR LI T8 T
R T
Fig.40 Pd-catalyzed enantioselective dearomative

cyclization for the synthesis of terpenes and steroids %

FUFVARBLAY e, Tang 45 i T #-AntPhos
HEAL I 73T A RR LI R AL SOz (& 41) , IF
1 S P E AL 5RO 5 K 19-hydroxysarmentagenin
F1 Ouabagenin 1945 8 .

B 41 AR ARSI TR T Ak
ik T

Fig.41 Pd-catalyzed enantioselective dearomative

cyclization for the synthesis of steroids ™

R T FRPEELA P AR 0 2 SR A W A R
Tang 45" T 5% T — Tl 25 A0 ) AR A X e e 36
WS R TTL  BRIE G LS A A E A, Wi A
il 2R T O ) T A W R AN S R A
AW R e B AR 5 (B 42a) o BETFE
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KHEL . ZITESEE T 3 ke B EAA PRAR 1Y
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AL T () SCBR 2208 Y 187 35 v OB G B 15[ W
AP ( —) 1 B K E W m A A A K () -
minfiesine fJJE 45 . 78 F- 1 AntPhos( 96%
e.e) AEAE T , 3 aek i 3550 1 %o e 3ok PR M AT AR Ak 22 55
FaIIAAL , 87 15 Hb 58 B T e E I i 51 ( +) ~dalesconol
A FIIB AR Bt R 2 ([ 42b) B

a. 3Cik [84 1; b. 3¢k [85]
B 42 4E-AntPhos AL ARXTFR 25 M AL L
R Z TR R 4y 7
Fig.42 Pd-AntPhos catalyzed asymmetric dearomative
cyclization for the synthesis of alkaloids and polyketal **
BT, Li 45 HGE T — R A & 2519 1
Xof Bl 3 5 R A IO 5 ) Ak S I 32 B v AT T
2 WA FPE RN OL S 10 B e AT 52 1 ( 1 43) o
%7 15 B e AR A, 3 X WA B 4 = 4k 45
AW R IR IR B W) 2 o E— A B0AE T T &

B 43 AAELB RIS WA X FR LI IRE S R
AR A
Fig.43 Pd-catalyzed enantioselective dearomative

cyclization of phenols for the synthesis of spirocycles[%]
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Y REAS WK T 5 AR (b 2 2 = 443 T
7R o
3.2 AXFRRERINAL

Deng %" 43 T ffi i} BIDIME {f Jy Big i , 41
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[4-+2 VR, LA o 45 28 R IR0 D R 0 8 4 S
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B a4 A R PR R (4+2] 5™
Fig.44 Pd-catalyzed stereoselective decarboxylative

[4+2] cycloaddition (87)

Huang % #2387 3 ik 40 i 1k 2 0 360 F
MBI T 1 ST R N T 7 S0 Je ) [4+2 ] LR
I, AR5 WA 25 N 1 ) e e 5 P B A X R B
PR A 1, 3-EAA T o m (6.7 1495
N2 ( &l 45) . Pd-WingPhos 4 £k 71 J& 5 3 X}
StEE TN IiDPS

B 45 4-WingPhos LA [4+2] 3R s g *
Fig.45 Pd-WingPhos catalyzed enantioselective

[4+2] annulations (e8]

Shao 2™ 4R T #1-WingPhos L1 1, 3-
I 5 24 B R RBe A S A% 100 1) T e 3 3 B o
B, T a i fh B 252 IR IR &
Py, WA TR B PRV S ( [ 46) o 3R 454
TR Yo fHH] WingPhos W] LU XUk
PIEER 7= 1) AT O 4 i S AR e Bk o AR 1Y
2, B AR — S EOR i U 1, 3G it T
AR ST IR B T RCAAR R RCT S8 1A 5 4
B b BUREEZ 18] 1 25 )RR AR D, g 1 1 S A

R 7, BB AC ) Bl AT S AR e 1 2R
U

46 H1-WingPhos fifL 1,34 5 it foe 1
AN B ER ISR A T T A A
Fig.46 Pd-WingPhos catalyzed enantioselective

cycloaddition of 1,3-enynes and pyrazolidinonersg}

2025 4F, Liu 45 Y 4508 T 4844k 1,3t
R IG5 S EURER M [2+2+2 ] B B B, 14
HZ B e 2 (18] 47) o IR EA )
V2 HJE 03 908 B R P 4 2 00 B e . A
W 2 R AL = Mk B IOk
AL IR O IV 77 o

B 47 AL LAY SRR IR
AWy [2+2+2 ) BRI B >
Fig.47 Pd-catalyzed [242+2] cycloaddition of

alkyne-tethered malononitriles and isocyanatesm]

Chen 25 Y S8 T —FbALMEAL 1,345 5 2-
FF PR35 SR 119 AS X R [3+2 ) BRAK IR , 1% o
SE AR N 5 Suzuki fEIE F B 06 i P S B ]
48) o (EARRIMEAL S5 F T, i T op ok 5 B T

[E 48 ff-AntPhos fiEfLEREHI T MY 1,305 5
95 SRR X e [3+2] 363 F i "
Fig.48 Pd-AntPhos catalyzed functional-group—directed
regiodivergent [3+2] annulations of 1,3-dienes and

arylboronic acids ol
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Fig.49 Pd-WingPhos catalyzed regio—and

enantioselective tandem allylic substitution"**>
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Fig.50 Rh-catalyzed asymmetric hydrogenation

. 9497
of enamides "
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Fig.51 Rh-catalyzed asymmetric hydrogenation of

aliphatic cyclic tetrasubstituted enamides 1%
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Fig.52 Ru or Pd—catalyzed asymmetric hydrogenation

of ketones """
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Fig.53 Ir—or Rh—catalyzed asymmetric hydrogenation of

multi=substituted olefinic substrates''*~*!
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Fig.54 Ir—<atalyzed asymmetric hydrogenation of
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